Seismotectonics Considered Artificial Neural Network Earthquake Predic- tion in Northeast Seismic Region of China
نویسندگان
چکیده
It is well known that earthquakes are a regional event, strongly controlled by local geological structures and circumstances. Reducing the research area can reduce the influence of other irrelevant seismotectonics. A new sub regiondividing scheme, considering the seismotectonics influence, was applied for the artificial neural network (ANN) earthquake prediction model in the northeast seismic region of China (NSRC). The improved set of input parameters and prediction time duration are also discussed in this work. The new dividing scheme improved the prediction accuracy for different prediction time frames. Three different research regions were analyzed as an earthquake data source for the ANN model under different prediction time duration frames. The results show: (1) dividing the research region into smaller subregions can improve the prediction accuracies in NSRC, (2) larger research regions need shorter prediction durations to obtain better performance, (3) different areas have different sets of input parameters in NSRC, and (4) the dividing scheme, considering the seismotectonics frame of the region, yields better results.
منابع مشابه
Empirical Seismic Vulnerability and Damage of Bottom Frame Seismic Wall Masonry Structure: A Case Study in Dujiangyan (China) Region
In order to understand the seismic performance and mechanism of bottom frame seismic wall masonry structure (BFSWMS) and its vulnerability in empirical seismic damage, based on the statistical and numerical analysis of the field seismic damage observation data of 2178 Dujiangyan structures in the Wenchuan great earthquake urban of China on May 12, 2008, a non-linear function model between the s...
متن کاملStatistical Prediction of Probable Seismic Hazard Zonation of Iran Using Self-organized Artificial Intelligence Model
The Iranian plateau has been known as one of the most seismically active regions of the world, and it frequently suffers destructive and catastrophic earthquakes that cause heavy loss of human life and widespread damage. Earthquakes are regularly felt on all sides of the region. Prediction of the occurrence location of the future earthquakes along with determining the probability percentage can...
متن کاملSTRUCTURAL RESPONSE OBSERVER BASED ON ARTIFICIAL NEURAL NETWORK
Structural vibration control is one of the most important features in structural engineering. Real-time information about seismic resultant forces is required for deciding module of intelligent control systems. Evaluation of lateral forces during an earthquake is a complicated problem considering uncertainties of gravity loads amount and distribution and earthquake characteristics. An artificia...
متن کاملArtificial neural network technique for rainfall temporal distribu-tion simulation (Case study: Kechik region)
Artificial neural networks (ANNs) have become one of the most promising tools for rainfall simulation since a few years ago. However, most of the researchers have focused on rainfall intensity records as well as on watersheds, which generally are utilized as input records of other hydro-meteorological variables. The present study was conducted in Kechik station, Golestan Province (northern Iran...
متن کاملGENERATION OF SYNTHETIC EARTHQUAKE RECORDS BY ARTIFICIAL INTELLIGENCE TECHNIQUES
For seismic resistant design of critical structures, a dynamic analysis, based on either response spectrum or time history is frequently required. Due to the lack of recorded data and randomness of earthquake ground motion that might be experienced by the structure under probable future earthquakes, it is usually difficult to obtain recorded data which fit the necessary parameters (e.g. soil ty...
متن کامل